Search results for "Vector autoregressive model"
showing 7 items of 7 documents
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
2021
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…
A Framework to Assess the Information Dynamics of Source EEG Activity and Its Application to Epileptic Brain Networks
2020
This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on…
Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological N…
2020
The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state&ndash
Robust estimation of partial directed coherence by the vector optimal parameter search algorithm
2009
We propose a method for the accurate estimation of Partial Directed Coherence (PDC) from multichannel time series. The method is based on multivariate vector autoregressive (MVAR) model identification performed through the recently proposed Vector Optimal Parameter Search (VOPS) algorithm. Using Monte Carlo simulations generated by different MVAR models, the proposed VOPS algorithm is compared with the traditional Vector Least Squares (VLS) identification method. We show that the VOPS provides more accurate PDC estimates than the VLS (either overall and single-arc errors) in presence of interactions with long delays and missing terms, and for noisy multichannel time series. ©2009 IEEE.
On the interpretability and computational reliability of frequency-domain Granger causality
2017
This Correspondence article is a comment which directly relates to the paper “A study of problems encountered in Granger causality analysis from a neuroscience perspective” (Stokes and Purdon, 2017). We agree that interpretation issues of Granger causality (GC) in neuroscience exist, partially due to the historically unfortunate use of the name “causality”, as described in previous literature. On the other hand, we think that Stokes and Purdon use a formulation of GC which is outdated (albeit still used) and do not fully account for the potential of the different frequency-domain versions of GC; in doing so, their paper dismisses GC measures based on a suboptimal use of them. Furthermore, s…
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes
2017
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by prevalently redundant or sy…
Simulating term structure of interest rates with arbitrary marginals
2011
Decision models under uncertainty rely their analysis on scenarios of the economic factors. A key economic factor is the term structure of interest rates (yields). Simulation models of the yield curve usually assume that the conjugate distribution of the interest rates is lognormal. Dynamic models, like vector auto-regression, implicitly postulate that the logarithm of the interest rates is normally distributed. Statistical analyses have, however, shown that stationary transformations (yield changes) of the interest rates are substantially leptokurtic, thus posing serious doubts on the reliability of the available models. We propose in this paper a VARTA model (Biller and Nelson, 2003) to s…