Search results for "Vector autoregressive model"

showing 7 items of 7 documents

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

A Framework to Assess the Information Dynamics of Source EEG Activity and Its Application to Epileptic Brain Networks

2020

This study introduces a framework for the information-theoretic analysis of brain functional connectivity performed at the level of electroencephalogram (EEG) sources. The framework combines the use of common spatial patterns to select the EEG components which maximize the variance between two experimental conditions, simultaneous implementation of vector autoregressive modeling (VAR) with independent component analysis to describe the joint source dynamics and their projection to the scalp, and computation of information dynamics measures (information storage, information transfer, statistically significant network links) from the source VAR parameters. The proposed framework was tested on…

Information transfercommon spatial patternComputer science0206 medical engineeringcommon spatial patterns02 engineering and technologyElectroencephalographyInformation theoryArticlelcsh:RC321-57103 medical and health sciencesEpilepsy0302 clinical medicineinformation storagemedicineinformation transferIctalEEGGeneralized epilepsylcsh:Neurosciences. Biological psychiatry. Neuropsychiatryinformation theorymedicine.diagnostic_testbusiness.industryGeneral NeurosciencePattern recognitionmedicine.disease020601 biomedical engineeringIndependent component analysismedicine.anatomical_structurevector autoregressive modelingindependent component analysisScalpSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaepilepsyArtificial intelligencebusiness030217 neurology & neurosurgeryBrain Sciences
researchProduct

Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological N…

2020

The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state&ndash

conditional transfer entropyInformation transferlinear predictionDynamical systems theoryComputer scienceState–space modelsGeneral Physics and Astronomylcsh:AstrophysicsNetwork topologycomputer.software_genrenetwork physiology01 natural sciencesArticle03 medical and health sciences0302 clinical medicinepenalized regression techniquelcsh:QB460-4660103 physical sciencesEntropy (information theory)Statistics::Methodologylcsh:Science010306 general physicspartial information decompositionmultivariate time series analysisinformation dynamics; partial information decomposition; entropy; conditional transfer entropy; network physiology; multivariate time series analysis; State–space models; vector autoregressive model; penalized regression techniques; linear predictionState–space modellcsh:QC1-999multivariate time series analysiInformation dynamicData pointpenalized regression techniquesAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaParametric modelOrdinary least squaresvector autoregressive modellcsh:QData mininginformation dynamicsentropycomputerlcsh:Physics030217 neurology & neurosurgery
researchProduct

Robust estimation of partial directed coherence by the vector optimal parameter search algorithm

2009

We propose a method for the accurate estimation of Partial Directed Coherence (PDC) from multichannel time series. The method is based on multivariate vector autoregressive (MVAR) model identification performed through the recently proposed Vector Optimal Parameter Search (VOPS) algorithm. Using Monte Carlo simulations generated by different MVAR models, the proposed VOPS algorithm is compared with the traditional Vector Least Squares (VLS) identification method. We show that the VOPS provides more accurate PDC estimates than the VLS (either overall and single-arc errors) in presence of interactions with long delays and missing terms, and for noisy multichannel time series. ©2009 IEEE.

Mathematical optimizationMultivariate statisticsNeuroscience (all)Parameter search algorithmComputer scienceEstimation theoryMonte Carlo methodSystem identificationPartial directed coherenceBiomedical EngineeringAC powerAutoregressive modelSearch algorithmVector autoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaCoherence (signal processing)Brain connectivityNeurology (clinical)Algorithm
researchProduct

On the interpretability and computational reliability of frequency-domain Granger causality

2017

This Correspondence article is a comment which directly relates to the paper “A study of problems encountered in Granger causality analysis from a neuroscience perspective” (Stokes and Purdon, 2017). We agree that interpretation issues of Granger causality (GC) in neuroscience exist, partially due to the historically unfortunate use of the name “causality”, as described in previous literature. On the other hand, we think that Stokes and Purdon use a formulation of GC which is outdated (albeit still used) and do not fully account for the potential of the different frequency-domain versions of GC; in doing so, their paper dismisses GC measures based on a suboptimal use of them. Furthermore, s…

FOS: Computer and information sciences0301 basic medicineTheoretical computer scienceImmunology and Microbiology (all)Computer scienceTime series analysiMathematics - Statistics TheoryStatistics Theory (math.ST)Statistics - ApplicationsGeneral Biochemistry Genetics and Molecular BiologyMethodology (stat.ME)Causality (physics)03 medical and health sciences0302 clinical medicinegranger causalityGranger causalityCorrespondenceFOS: MathematicsApplications (stat.AP)Physiological oscillationGeneral Pharmacology Toxicology and PharmaceuticsTime seriessignal processingStatistical Methodologies & Health Informaticsfrequency-domain connectivityReliability (statistics)Statistics - MethodologyInterpretabilityGranger-Geweke causalityBiochemistry Genetics and Molecular Biology (all)Interpretation (logic)General Immunology and Microbiologybrain connectivityGeneral MedicineArticlesvector autoregressive models030104 developmental biologyMathematics and StatisticsWildcardVector autoregressive modelPharmacology Toxicology and Pharmaceutics (all)Frequency domaintime series analysisspectral decompositionSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaBrain connectivity; Directed coherence; Frequency-domain connectivity; Granger-Geweke causality; Physiological oscillations; Spectral decomposition; Time series analysis; Vector autoregressive models; Biochemistry Genetics and Molecular Biology (all); Immunology and Microbiology (all); Pharmacology Toxicology and Pharmaceutics (all)directed coherence030217 neurology & neurosurgeryphysiological oscillations
researchProduct

Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

2017

Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by prevalently redundant or sy…

FOS: Computer and information sciencesInformation transferComputer scienceGaussianSocial SciencesGeneral Physics and AstronomyInformation theory01 natural sciences010305 fluids & plasmasState spaceStatistical physicslcsh:Scienceinformation theorymultiscale entropylcsh:QC1-999Interaction informationMathematics and Statisticssymbolsinformation dynamicsInformation dynamics; Information transfer; Multiscale entropy; Multivariate time series analysis; Redundancy and synergy; State space models; Vector autoregressive models; Physics and Astronomy (all)information dynamics; information transfer; multiscale entropy; multivariate time series analysis; redundancy and synergy; state space models; vector autoregressive modelsMultivariate time series analysiMathematics - Statistics Theorylcsh:AstrophysicsStatistics Theory (math.ST)Statistics - ApplicationsMethodology (stat.ME)symbols.namesakePhysics and Astronomy (all)0103 physical scienceslcsh:QB460-466FOS: Mathematicsinformation transferRelevance (information retrieval)Applications (stat.AP)Transfer Entropy010306 general physicsGaussian processStatistics - MethodologyState space modelstate space modelsmultivariate time series analysisredundancy and synergyvector autoregressive modelsInformation dynamicVector autoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaTransfer entropylcsh:Qlcsh:PhysicsEntropy
researchProduct

Simulating term structure of interest rates with arbitrary marginals

2011

Decision models under uncertainty rely their analysis on scenarios of the economic factors. A key economic factor is the term structure of interest rates (yields). Simulation models of the yield curve usually assume that the conjugate distribution of the interest rates is lognormal. Dynamic models, like vector auto-regression, implicitly postulate that the logarithm of the interest rates is normally distributed. Statistical analyses have, however, shown that stationary transformations (yield changes) of the interest rates are substantially leptokurtic, thus posing serious doubts on the reliability of the available models. We propose in this paper a VARTA model (Biller and Nelson, 2003) to s…

Logarithmmedia_common.quotation_subjectYield (finance)Management Science and Operations ResearchTerm (time)Interest rateScenario simulationyield curveSettore SECS-S/06 -Metodi Mat. dell'Economia e d. Scienze Attuariali e Finanz.fat tailsLog-normal distributionKurtosisEconometricsvector autoregressive modelYield curveStatistics Probability and UncertaintyBusiness and International ManagementDecision modelmedia_commonMathematics
researchProduct